July is a great month for rendering enthusiasts: there's of course Siggraph, but the most exciting conference is High Performance Graphics, which focuses on (real-time) ray tracing. One of the more interesting sounding papers is titled: "Towards real-time path tracing: An Efficient Denoising Algorithm for Global Illumination" by Mara, McGuire, Bitterli and Jarosz, which was released a couple of days ago. The paper, video and source code can be found at
Abstract
We propose a hybrid ray-tracing/rasterization strategy for realtime rendering enabled by a fast new denoising method. We factor global illumination into direct light at rasterized primary surfaces and two indirect lighting terms, each estimated with one pathtraced sample per pixel. Our factorization enables efficient (biased) reconstruction by denoising light without blurring materials. We demonstrate denoising in under 10 ms per 1280×720 frame, compare results against the leading offline denoising methods, and include a supplement with source code, video, and data.
While the premise of the paper sounds incredibly exciting, the results are disappointing. The denoising filter does a great job filtering almost all the noise (apart from some noise which is still visible in reflections), but at the same it kills pretty much all the realism that path tracing is famous for, producing flat and lifeless images. Even the first Crysis from 10 years ago (the first game with SSAO) looks distinctly better. I don't think applying such aggressive filtering algorithms to a path tracer will convince game developers to make the switch to path traced rendering anytime soon. A comparison with ground truth reference images (rendered to 5000 samples or more) is also lacking from some reason.
At the same conference, a very similar paper will be presented titled "Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illumination".
Abstract
We introduce a reconstruction algorithm that generates a temporally stable sequence of images from one path-per-pixel global illumination. To handle such noisy input, we use temporal accumulation to increase the effective sample count and spatiotemporal luminance variance estimates to drive a hierarchical, image-space wavelet filter. This hierarchy allows us to distinguish between noise and detail at multiple scales using luminance variance.
Physically-based light transport is a longstanding goal for real-time computer graphics. While modern games use limited forms of ray tracing, physically-based Monte Carlo global illumination does not meet their 30 Hz minimal performance requirement. Looking ahead to fully dynamic, real-time path tracing, we expect this to only be feasible using a small number of paths per pixel. As such, image reconstruction using low sample counts is key to bringing path tracing to real-time. When compared to prior interactive reconstruction filters, our work gives approximately 10x more temporally stable results, matched references images 5-47% better (according to SSIM), and runs in just 10 ms (+/- 15%) on modern graphics hardware at 1920x1080 resolution.
It's going to be interesting to see if the method in this paper produces more convincing results that the other paper. Either way HPG has a bunch more interesting papers which are worth keeping an eye on.